Computer Vision and Robotics Research Laboratory Tech Report: Lane Change Intent Analysis Using Robust Operators and Sparse Bayesian Learning
نویسندگان
چکیده
In this paper we demonstrate a driver intent inference system (DIIS) based on lane positional information, vehicle parameters, and driver head motion. We present robust computer vision methods for identifying and tracking freeway lanes and driver head motion. These algorithms are then applied and evaluated on real-world data collected in a modular intelligent vehicle test-bed. Analysis of the data for lane change intent is performed using a sparse Bayesian learning methodology. Finally, the system as a whole is evaluated using a novel metric and real-world data of vehicle parameters, lane position, and driver head motion.
منابع مشابه
Automatic Lane Extraction in Hemoglobin and Serum Protein Electrophoresis Using Image Processing
Image analysis is an image processing technique that aims to extract features or information from images. Image analysis in medicine has a special place because is a basis for disease diagnosis for physicians. Electrophoresis is a laboratory separating technique. Electrophoresis images are created during the electrophoresis process. Serum protein and hemoglobin electrophoresis test are the ...
متن کاملAutomatic Lane Extraction in Hemoglobin and Serum Protein Electrophoresis Using Image Processing
Image analysis is an image processing technique that aims to extract features or information from images. Image analysis in medicine has a special place because is a basis for disease diagnosis for physicians. Electrophoresis is a laboratory separating technique. Electrophoresis images are created during the electrophoresis process. Serum protein and hemoglobin electrophoresis test are the ...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملLearning Bayesian Network Structure Using Genetic Algorithm with Consideration of the Node Ordering via Principal Component Analysis
‎The most challenging task in dealing with Bayesian networks is learning their structure‎. ‎Two classical approaches are often used for learning Bayesian network structure;‎ ‎Constraint-Based method and Score-and-Search-Based one‎. ‎But neither the first nor the second one are completely satisfactory‎. ‎Therefore the heuristic search such as Genetic Alg...
متن کامل